Projected Tikhonov Regularization of Large-Scale Discrete Ill-Posed Problems

نویسندگان

  • David R. Martin
  • Lothar Reichel
چکیده

The solution of linear discrete ill-posed problems is very sensitive to perturbations in the data. Confidence intervals for solution coordinates provide insight into the sensitivity. This paper presents an efficient method for computing confidence intervals for large-scale linear discrete ill-posed problems. The method is based on approximating the matrix in these problems by a partial singular value decomposition of low rank. We investigate how to choose the rank. Our analysis also yields novel approaches to the solution of linear discrete ill-posed problems with solution norm or residual norm constraints.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ill-Posed and Linear Inverse Problems

In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.

متن کامل

Tikhonov Regularization with a Solution Constraint

Many numerical methods for the solution of linear ill-posed problems apply Tikhonov regularization. This paper presents a modification of a numerical method proposed by Golub and von Matt for quadratically constrained least-squares problems and applies it to Tikhonov regularization of large-scale linear discrete ill-posed problems. The method is based on partial Lanczos bidiagonalization and Ga...

متن کامل

Fractional regularization matrices for linear discrete ill-posed problems

The numerical solution of linear discrete ill-posed problems typically requires regularization. Two of the most popular regularization methods are due to Tikhonov and Lavrentiev. These methods require the choice of a regularization matrix. Common choices include the identity matrix and finite difference approximations of a derivative operator. It is the purpose of the present paper to explore t...

متن کامل

Square regularization matrices for large linear discrete ill-posed problems

Large linear discrete ill-posed problems with contaminated data are often solved with the aid of Tikhonov regularization. Commonly used regularization matrices are finite difference approximations of a suitable derivative and are rectangular. This paper discusses the design of square regularization matrices that can be used in iterative methods based on the Arnoldi process for large-scale Tikho...

متن کامل

Tikhonov regularization based on generalized Krylov subspace methods

We consider Tikhonov regularization of large linear discrete ill-posed problems with a regularization operator of general form and present an iterative scheme based on a generalized Krylov subspace method. This method simultaneously reduces both the matrix of the linear discrete ill-posed problem and the regularization operator. The reduced problem so obtained may be solved, e.g., with the aid ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Sci. Comput.

دوره 56  شماره 

صفحات  -

تاریخ انتشار 2013